GEOTHERMAL TECHNOLOGIES OFFICE ## Play Fairway Analysis Phase II: Projects Selected for Continued Funding | Selected Project | City | State | Phase I Project Highlights | Preliminary | |---|-------------------|--------|--|--------------| | | , | | , 5 5 | DOE Share | | | | | | for Phase II | | Nevada Bureau of
Mines and Geology,
University of Nevada,
Reno | Reno | NV | Ranked heat and permeability data subsets to define geothermal play fairways in west-central to eastern Nevada Applied statistics based on known high-temperature geothermal system benchmarks to weight hierarchal parameters Developed permeability and overall geothermal potential predictions for study area, as displayed on geothermal play fairway and favorability maps | \$825,000 | | Utah State University | Salt Lake
City | UT | Compiled data related to heat source, reservoir and recharge permeability, and cap/seal for the Snake River Plain Created process to convert data layers to evidence and confidence layers, which were then used to derive risk maps for heat, permeability, and seal Identified 8 favorable areas with multiple prospects including: Kuna-Marsing, Mountain Home, Castle Creek-Bruneau, Deadman Flat, Camas Prairie-Mount Bennett Hills, King Hill, Banbury, Arco Rift, and Blackfoot | \$664,971 | | University of Hawaii | Honolulu | Hawaii | Compiled and integrated existing data to produce a comprehensive statewide geothermal assessment—the first since 1985 Ranked legacy and current datasets in terms their of ability to indicate subsurface heat, permeability, and fluid Produced a statewide map of geothermal resource probability, and a map of confidence in this probability | \$720,000 | | Ruby Mountain Inc. | Salt Lake
City | UT | The project compared two methods - deterministic and stochastic – for purposes of creating a geothermal play fairway analysis for the Tularosa Basin In total, twelve plays were identified and then ranked by the level of certainty (e.g. Identified plays with a greater level of certainty were ranked higher) The highest ranking play is on Fort Bliss' McGregor Range in Otero County, New Mexico | \$711,200 | | University of Utah/EGI – Great Basin | Salt Lake
City | UT | Assessed heat and permeability potential in the Eastern Great Basin Developed a favorability map Identified prospects near Roosevelt Hot Springs, Twin Peaks, Crater Knoll, and Pavant Butte | \$720,000 | | Washington Division
of Geology and Earth
Resources | Olympia | WA | Developed detailed models of heat and permeability potential at 3 sites in the Washington Cascade Mountain Range. Combined heat and permeability models to look at favorability and risk at 200m and 3km depth. Areas of interest for continuing work are: southeastern Mount Baker, the northern and southern Mount St. Helens seismic zone, and the Wind River valley | \$452,810 |